本篇文章给大家谈谈 高等数学 心形线绕极轴转一圈的体积怎么求?求过程 ,以及 高等数学心形线绕极轴转一圈的求体积的过程。 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 高等数学 心形线绕极轴转一圈的体积怎么求?求过程 的知识,其中也会对 高等数学心形线绕极轴转一圈的求体积的过程。 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
旋转体的体积为160π。解:对于心型线r=4(1+cosθ),那么x=rcosθ,y=r*sinθ。根据二重积分中体积公式可知,该体积V为,V=∫∫D2πydρ(其中D为心型线围成的区域,D={(r,θ)0≤θ≤π/2,0≤r≤r(θ)
解:由极坐标下曲线ρ=ρ(θ)绕极轴旋转所得的体积可以用以极点O为顶点,极径ρ为母线的圆锥体积增量来积分。以ρ=ρ(θ)为母线的圆锥的体积为V(ρ,θ)=(π/3)(ρsinθ)^2(ρcosθ)=(π/3)ρ^3(sinθ)^2
绕极轴旋转所称立体的体积微元:dV=π*|y|^2*ds ds=rdθ y=rsinθ 所以 V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同) =π*∫r^3*(sinθ)^2dθ =πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π,故所求旋转体体积 V = ∫ <0, π> (2π/3) r^3sinθ dθ = (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ = -(2π/3)a^3
高等数学 心形线绕极轴转一圈的体积怎么求?求过程
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π。故所求旋转体体积 V = ∫ <0, π> (2π/3) r^3sinθ dθ = (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ = -(2π/3)a^3
绕极轴旋转所称立体的体积微元:dV=π*|y|^2*ds ds=rdθ y=rsinθ 所以 V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同)=π*∫r^3*(sinθ)^2dθ =πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t=
心形线r=a(1+cosθ)绕极轴旋转一周产生立体的体积是7π^2*a^3/8。V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同) =π*∫r^3*(sinθ)^2dθ =πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t=θ/2
=rsinθ=a(1+cosθ)sinθ =a(sinθ+sinθcosθ),代入:V=∫(0,2a)πy²dx =π∫(π/2,0)a²(sinθ+sinθcosθ)²a(-sinθ-2sinθcosθ)dθ =πa³∫(0,π/2)sin&
求心形线r=a(1+cosθ)(a>0)绕极轴旋转所围成的立体的体积~
=7π^2*a^3/8 心形线:心脏线在曼德博集合正中间的图形便是一个心脏线。心脏线的英文名称“Cardioid”是 de Castillon 在1741年的《Philosophical Transactions of the Royal Society》发表的;意为“像心脏的”。
心形线是一个函数图像,因其形状很像心脏,所以被称为心形线,如图。而r=a(1+cosθ)是这个函数图像的极坐标方程表达形式,而不是我们常见的用x,y表达的直角坐标方程。更多相关资料详见百度百科网页链接 如果我的回答有帮
心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。以a=3为例:
心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。极坐标方程 水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)垂直方向: ρ=a(1-sinθ)
什么是心形线?
解:对于心型线r=4(1+cosθ),那么x=rcosθ,y=r*sinθ。根据二重积分中体积公式可知,该体积V为,V=∫∫D2πydρ(其中D为心型线围成的区域,D={(r,θ)0≤θ≤π/2,0≤r≤r(θ)})=∫(0,π/2)∫(
解:由极坐标下曲线ρ=ρ(θ)绕极轴旋转所得的体积可以用以极点O为顶点,极径ρ为母线的圆锥体积增量来积分。以ρ=ρ(θ)为母线的圆锥的体积为V(ρ,θ)=(π/3)(ρsinθ)^2(ρcosθ)=(π/3)ρ^3(sinθ)^2
极轴就是θ=0的射线,或者不准确的讲就是X轴正半轴。显然,心形线关于极轴对称,取其上半部分图形(0<θ<π)绕极轴旋转所称立体的体积微元:dV=π*|y|^2*ds ds=rdθ y=rsinθ 所以 V=∫π(rsinθ)^2*rd
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π。故所求旋转体体积 V = ∫ <0, π> (2π/3) r^3sinθ dθ = (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ = -(2π/3)a^3
心形线r=a(1+cosθ)绕极轴旋转一周产生立体的体积是7π^2*a^3/8。V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同) =π*∫r^3*(sinθ)^2dθ =πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t=θ/2
高等数学心形线绕极轴转一圈的求体积的过程。
2、极轴右边:r=a(1+cosθ)a>0 r²=ar+acosθ =ar+ax 对原式进行两边积分 原式=(π/2)[ax十(2/3)(1/4a)(a²十4ax)^(3/2)](-a/4,0)= (π/2)(a²/4十(1/6a
极轴就是θ=0的射线,或者不准确的讲就是X轴正半轴。显然,心形线关于极轴对称,取其上半部分图形(0<θ<π)绕极轴旋转所称立体的体积微元:dV=π*|y|^2*ds ds=rdθ y=rsinθ 所以 V=∫π(rsinθ)^2*rd
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π,故所求旋转体体积 V = ∫ <0, π> (2π/3) r^3sinθ dθ = (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ = -(2π/3)a^3
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π。故所求旋转体体积 V = ∫ <0, π> (2π/3) r^3sinθ dθ = (2π/3)a^3 ∫ <0, π> (1+cosθ)^3sinθ dθ = -(2π/3)a^3
解:由极坐标下曲线ρ=ρ(θ)绕极轴旋转所得的体积可以用以极点O为顶点,极径ρ为母线的圆锥体积增量来积分。以ρ=ρ(θ)为母线的圆锥的体积为V(ρ,θ)=(π/3)(ρsinθ)^2(ρcosθ)=(π/3)ρ^3(sinθ)^2
如图:
求由心形线r=4(1+cosθ)、直线θ=0和θ=π/2所围图形绕极轴旋转一周所得旋转体的体积?
旋转体的体积为160π。
解:对于心型线r=4(1+cosθ),那么x=rcosθ,y=r*sinθ。
根据二重积分中体积公式可知,该体积V为,
V=∫∫D2πydρ(其中D为心型线围成的区域,D={(r,θ)0≤θ≤π/2,0≤r≤r(θ)})
=∫(0,π/2)∫(0,r(θ))2π*y*r^2dr
=∫(0,π/2)dθ∫(0,r(θ))2π*r^2*sinθdr
=2π*∫(0,π/2)sinθdθ∫(0,r(θ))r^2dr
=2π/3*∫(0,π/2)(r(θ))^3sinθdθ
=2π/3*∫(0,π/2)(4(1+cosθ))^3sinθdθ
=128π/3*∫(0,π/2)(1+cosθ)^3sinθdθ
=-128π/3*∫(0,π/2)(1+cosθ)^3d(1+cosθ)
=-128π/3*1/4*(1+cosθ)^4(0,π/2)
=32π/3*(2^4-1)
=160π
扩展资料:
1、二重积分的几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。
某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
2、二重积分性质
(1)函数和(差)的二重积分等于各函数二重积分的和(差)。
(2)被积函数的常系数因子可以提到积分号外。
3、心型线的数学表达方式
(1)极坐标方程
水平方向:ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)。垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)。
(2)参数方程
-π≤t≤π
x=a*(2*cos(t)-cos(2*t))
y=a*(2*sin(t)-sin(2*t))
参考资料来源:百度百科-二重积分
参考资料来源:百度百科-心型线
如图;围成的平面图形饶极轴旋转所得的旋转体的体积=495.48 表面积=353.14
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π。
故所求旋转体体积
V = ∫ (2π/3) r^3sinθ dθ
= (2π/3)a^3 ∫ (1+cosθ)^3sinθ dθ
= -(2π/3)a^3 ∫ (1+cosθ)^3 d(1+cosθ)
= -(π/6)a^3[(1+cosθ)^4] = (8π/3)a^3。
单位换算
1立方分米=1000立方厘米=1000000立方毫米=1升=1000毫升=0.061 立方英寸。
1立方厘米=1000立方毫米=1毫升=0.000061 立方英寸。
1 立方米=1000 立方分米=1000000立方厘米=1000000000立方毫米=0.353 立方英尺=1.3079 立方码。
1 立方英寸=0.016387 立方分米=16.387立方厘米=16387立方毫米。
1立方英尺=28.3立方分米=28300立方厘米=28300000立方毫米。
1 立方码=27 立方英尺=0.7646 立方米=164.6立方分米=164600立方厘米=164600000立方毫米。
1 立方尺 = 31.143蒲式耳(英) = 32.143 蒲式耳(美)。
1 加仑(美) =0.0037854118 立方米 =0.8326741845 加仑(英)。
以上内容参考:百度百科-体积
极轴就是θ=0的射线,或者不准确的讲就是X轴正半轴。
显然,心形线关于极轴对称,取其上半部分图形(0<θ<π)
绕极轴旋转所称立体的体积微元:
dV=π*|y|^2*ds
ds=rdθ
y=rsinθ
所以
V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同) =π*∫r^3*(sinθ)^2dθ
=πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t=θ/2)
=πa^3*∫[2(cost)^2]^3*(2sintcost)^2*2dt(积分限从0到π/2,下同)
=64πa^3*∫(cost)^8*(sint)^2dt
=64πa^3*[∫(cost)^8dt-∫(cost)^10dt] (用华里士公式)
=64πa^3*(π/2)*[(7*3*5*1)/(8*6*4*2)-(9*7*5*3*1)/(10*8*6*4*2)]
=32π^2*a^3*7/256
=7π^2*a^3/8
扩展资料:
在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。正则曲线才是经典曲线论的主要研究对象。
处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。
直观上,曲线可看成空间质点运动的轨迹。曲线的更严格的定义是区间α,b)到E3中的映射r:α,b)E3。
对于平面曲线,与空间曲线论基本定理相仿,它的形态由其相对曲率kr(s)所确定,故kr(s)的极值自然是令人感兴趣的。
相对曲率kr(s)的逗留点,的点称为曲线的顶点,对于凸闭曲线,即位于其上每一点的切线的一侧的曲线,成立著名的四顶点定理:平面凸闭曲线至少有四个顶点,因为椭圆只有四个顶点,所以这个结论不能再改进。
心形线 r(θ) = a(1+cosθ) 极轴之上部分 0 ≤ θ ≤ π,
故所求旋转体体积
V = ∫ (2π/3) r^3sinθ dθ
= (2π/3)a^3 ∫ (1+cosθ)^3sinθ dθ
= -(2π/3)a^3 ∫ (1+cosθ)^3 d(1+cosθ)
= -(π/6)a^3[(1+cosθ)^4] = (8π/3)a^3
扩展资料:
极坐标方程
水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)
垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)
直角坐标方程
心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)
参数方程
x=a*(2*cos(t)-cos(2*t))y=a*(2*sin(t)-sin(2*t))
所围面积为3/2*PI*a^2,形成的弧长为8a。
参考资料来源:百度百科-心脏线
极轴就是θ=0的射线,或者不准确的讲就是X轴正半轴。
显然,心形线关于极轴对称,取其上半部分图形(0<θ<π)
绕极轴旋转所称立体的体积微元:
dV=π*|y|^2*ds
ds=rdθ
y=rsinθ
所以
V=∫π(rsinθ)^2*rdθ (积分限从0到π,下同) =π*∫r^3*(sinθ)^2dθ
=πa^3*∫(1+cosθ)^3*(sinθ)^2dθ (令t=θ/2)
=πa^3*∫[2(cost)^2]^3*(2sintcost)^2*2dt(积分限从0到π/2,下同)
=64πa^3*∫(cost)^8*(sint)^2dt
=64πa^3*[∫(cost)^8dt-∫(cost)^10dt] (用华里士公式)
=64πa^3*(π/2)*[(7*3*5*1)/(8*6*4*2)-(9*7*5*3*1)/(10*8*6*4*2)]
=32π^2*a^3*7/256
=7π^2*a^3/8
扩展资料:
在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。正则曲线才是经典曲线论的主要研究对象。
处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。
直观上,曲线可看成空间质点运动的轨迹。曲线的更严格的定义是区间α,b)到E3中的映射r:α,b)E3。
对于平面曲线,与空间曲线论基本定理相仿,它的形态由其相对曲率kr(s)所确定,故kr(s)的极值自然是令人感兴趣的。
相对曲率kr(s)的逗留点,的点称为曲线的顶点,对于凸闭曲线,即位于其上每一点的切线的一侧的曲线,成立著名的四顶点定理:平面凸闭曲线至少有四个顶点,因为椭圆只有四个顶点,所以这个结论不能再改进。
关于 高等数学 心形线绕极轴转一圈的体积怎么求?求过程 和 高等数学心形线绕极轴转一圈的求体积的过程。 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 高等数学 心形线绕极轴转一圈的体积怎么求?求过程 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 高等数学心形线绕极轴转一圈的求体积的过程。 、 高等数学 心形线绕极轴转一圈的体积怎么求?求过程 的信息别忘了在本站进行查找喔。