他表示,当前具身智能模型路线、数据范式以及最佳机器人形态仍未定型,大规模落地仍处于早期阶段,其未来方向仍在持续竞争与快速演化中。 “当前行业仍面临三个核心焦点问题。”许志远表示,一是模型路线之争,即大模型范式是否适用于机器人。虽然大模型在语言、图像、视频领域取得巨大成功,但“同样的范式能否直接迁移到机器人控制”仍未被证明,业界正在探索多种途径。 二是数据训练范式之争。数据仍然是限制机器人能力跃升的核心瓶颈,混合数据、多模态数据、世界模型生成数据等方向均在探索中。 三是形态路线之争,即人形机器人是否是“真需求”。当前,特斯拉、FigureAI等企业坚持全人形路线;而中国国内今年涌现出多款“轮-臂式复合机器人”,这种路径更强调“工程可落地性”,旨在在短期内形成可规模化的商业应用。 许志远介绍,目前,利用大模型提升机器人的泛化能力已成为业界共识,但如何有效地将大模型应用于机器人系统,仍存在多条技术路径,行业也在持续探索中。