本篇文章给大家谈谈 八年级上册数学难题:《轴对称》和《全等三角形》。(人教) ,以及 八年级上册数学知识点归纳总结 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 八年级上册数学难题:《轴对称》和《全等三角形》。(人教) 的知识,其中也会对 八年级上册数学知识点归纳总结 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
如图(1),OP是∠MON的平分线,请你利用该图形画一对一OP所在直线为对称轴的全等三角形.请参考这个全等三角形得到作法,解答下列问题:1、如图二,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD
1.角是轴对称图形,其对称轴是___.2.点M(-2,1)关于x轴对称点N的坐标是___.3.等腰三角形的周长为30cm,一边长是12cm,则另两边的长分别 是___.5.在△ABC中,AB=AC=10cm,∠A=60°,则BC=___.
已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即AD⊥CE,BE⊥CE,(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB;(2)如图2,当CE位于点
2、若C为定线段AB外一动点,以AC、BC为边分别向外侧作正方形CADF和正方形CBEG,求证:不论C的位置在直线AB的同侧怎样变化,线段DE的中点M为定点.
它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是___(只填序号). 【答案】①
八年级上册数学难题:《轴对称》和《全等三角形》。(人教)
初二数学知识点之轴对称2 一、轴对称图形 1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.一次函数 (一)一次函数是函数中的一种,一般形如y=kx+b(k
八年级上册数学轴对称教案(一)课题: 第十三章 轴对称 教学目标 (一)教学知识点 1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴
八年级数学成轴对称的图形的性质知识点 篇1 ①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。3.角平分线上的点到角两边距离相等。4.线
1.期末数学八年级上册知识点归纳北师大版 篇一 一、轴对称图形 1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线
因为 前三个图形都是 轴对称图形,分别是2、4、6的轴对称变换图形,所以下一个应该为 8 的轴对称变换图形
八年级上数学——做轴对称图形
1.全等三角形的对应角相等。2.全等三角形的对应边相等。3. 能够完全重合的顶点叫对应顶点。4.全等三角形的对应边上的高对应相等。5.全等三角形的对应角的角平分线相等。6.全等三角形的对应边上的中线相等。7.全等
第十三章 轴对称13.1 轴对称13.2 画轴对称图形信息技术应用 用轴对称进行图案设计13.3 等腰三角形实验与探究 三角形中边与角之间的不等关系13.4 课题学习 最短路径问题数学活动小结复习题13 第十四章 整式的乘法与
增收节支 里程碑上的数 二元一次方程与一次函数 回顾与思考 复习题 第八章 数据的代表 平均数 中位数与众数 利用计算器求平均数 回顾与思考 复习题 总复习
八年级数学上册。根据查询青岛市教育局官网显示,三角形内角平分线定理在青岛版课本八年级数学上册第五章讲解。三角形内角平分线定理为三角形任意两边之比等于夹角的平分线分对边之比。
在生活中,你见过各式各样的图形,你知道什么是全等形吗?全等是进一步研究图形及其性质的基础。你将经历观察、实验、归纳、猜想、探索过程,掌握三角形全等的性质和条件,并开始接触尺规作图。轴对称图形与成轴对称的现象随处
青岛版八年级上册数学教材内容 第一章 轴对称与轴对称图形 1.1 我们身边的轴对称图形 1.2线段的垂直平分线 1.3角的平分线 1.4等腰三角形 1.5成轴对称图形的性质 1.6镜面对称 1.7简单的图案设计 第二
青岛版八年级上册数学教材内容
八年级上册数学知识点 (一)运用公式法 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式
初二数学知识点归纳二 1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。 2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 (2)角平分
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。 拓展阅读:初中数学提升方法 1、课前预习,认真听讲 为什么要预习,你要
初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。 初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将
初中八年级数学知识点
所以同学们,你不仅要做错题笔记,而且要善于总结规律,只有不断总结和归纳,思维才能不断提升,解题方法才会不断丰富。八年级上册数学知识点提纲相关 文章 :★ 人教版八年级数学上册知识点总结 ★ 八年级上册数学复习
八年级 上册数学知识点 1、全等三角形的对应边、对应角相等 2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4、推论(AAS)有两角和
3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。八年级数学课本知识点相关 文章 :★ 八年级上册数学课本的知识点归纳 ★ 人教版八年级上册
初二上学期数学知识点归纳 一、勾股定理 1、勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理 如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。3、勾股
点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等 点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数 初二数学 复习 方法 (一)、整理本学期学过的知识与方法:1.第一、七章是几何部分。这
(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。八年级
八年级上册数学知识点归纳总结
9.已知点A(x,-4)与点B(3,y)关于y轴对称,那么x+y的值为___.10.已知:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为 .二、
一.选择题1.改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极 股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,
测试题1.一、填空题(每题3分,共30分)1.长方形的对称轴有___条.2.等腰直角三角形的底角为___.3.等边三角形的边长为 ,则它的周长为___.4.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有___
在A处测得灯塔C在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.当轮船到达灯塔C的正东方向D处时,又航行了多少海里?
[八年级上册数学第13章轴对称单元检测卷及答案] 八年级上册数学轴对称
马上期末考试了,好多同学想要八年级数学下册的知识点,以便复习备考。下面我整理了初中八年级下册数学知识点,大家可以对照复习,供大家参考。
几何知识点 1、旋转和平移
平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。
旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。
2、平行四边形
平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。
3、特殊平行四边形行
特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。
整式的加减 1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数(coefficient)。
3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
轴对称知识点 1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
分解因式 一、公式:1、ma+mb+mc=m(a+b+c);
2、a2-b2=(a+b)(a-b);
3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.
四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
分解因式的方法:1、提公因式法.2、运用公式法。
为了方便大家复习八年级上册的数学知识点,现将我整理出来的知识点给大家分享出来,供大家学习参考!
勾股定理 1.在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a 2 +b 2 =c 2 。
2.勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a²+b²=c²,则△ABC是直角三角形。
一次函数 (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。
(二)函数三要素
1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。
(三)一次函数的表示方法
1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3.图像法:用图象来表示函数关系的方法叫做图象法。
(四)一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。
6.平移时:上加下减在末尾,左加右减在中间。
图形的平移与旋转 1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2.平移性质
(1)图形平移前后的形状和大小没有变化,只是位置发生变化。
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。
3.旋转,在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
4.旋转的性质:旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
第一章 轴对称与轴对称图形
1.1 我们身边的轴对称图形
1.2线段的垂直平分线
1.3角的平分线
1.4等腰三角形
1.5成轴对称图形的性质
1.6镜面对称
1.7简单的图案设计
第二章 乘法公式与因式分解
2.1平方差公式
2.2完全平方公式
2.3用提公因式法进行因式分解
2.4用公式法进行因式分解
第三章 分式
3.1分式的基本性质
3.2分式的约分
3.3分式的乘法于除法
3.4分式的通分
3.5分式的加法与减法
3.6比和比例
3.7分式方程
第四章 样本与估计
4.1普查与抽样调查
4.2样本的选取
4.3加权平均数
4.4中位数
4.5众数
4.6用计算器求平均数
第五章 实数
5.1算术平方根
5.2勾股定理
5.3无理数2是有理数吗
5.4由边长判定直角三角形
5.5平方根
5.6立方根
5.7方根估算
5.8用计算器求平方根和立方根
5.9实数
第六章 一元一次不等式
6.1不等关系和不等式
6.2一元一次不等式
6.3一元一次不等式组
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
八年级数学知识点
数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查.
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.
3.总体:要考察的全体对象称为总体.
4.个体:组成总体的每一个考察对象称为个体.
5.样本:被抽取的所有个体组成一个样本.
6.样本容量:样本中个体的数目称为样本容量.
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.
8.频率:频数与数据总数的比为频率.
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.
初二下册数学知识点 总结
解一元一次方程
1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于"和,差,倍,分问题"
仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于"行程问题"
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
初二 数学学习方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
八年级数学知识点青岛版相关 文章 :
★ 八年级数学青岛版知识点
★ 青岛版八年级数学知识点
★ 青岛版初二数学知识点
★ 备考资料
★ 青岛版初一数学知识点
★ 一年级数学青岛版知识点
★ 八年级学习方法指导
★ 六年级数学知识点青岛版
★ 青岛版七年级数学知识点总结
★ 七年级上册青岛版数学知识提纲
题目应该是AB=BC
∠B=∠BPQ=0.5∠APQ=0.5∠AQP
∠C=0.5(180-∠B)=∠APC
由于 ∠BPQ+∠APQ+∠C=180°
代入解得 ∠B=36°
轴对称图形是一个图案,两个图形关于某条直线对称是两个图案
已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即AD⊥CE,BE⊥CE,
(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB;
(2)如图2,当CE位于点F的左侧时,求证:ED=BE-AD;
(3)如图3,当CE在△ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想.
1:等腰三角形中一腰上的中线把其周长分为15CM 6CM 求此三角形各边长
答案:10cm 10cm 1cm
2:AB=AC 角BAC=120° FE为AC中垂线(垂直平分线)求证BF=2CF
(BC为底AB为左边一线AC为右边一线点F在BC上E在AC上)
证明:连接AF 用HL证明RT三角形FEA RT三角形FEC 全等 后可推出两底角和角FAC都等30° 再由RT三角形中30°所对的边等于斜边的一半得AF=二分之一BF
又因为中垂线上的点到线段两端点距离相等得FA=FC
所以BF=2CF
关于 八年级上册数学难题:《轴对称》和《全等三角形》。(人教) 和 八年级上册数学知识点归纳总结 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 八年级上册数学难题:《轴对称》和《全等三角形》。(人教) 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 八年级上册数学知识点归纳总结 、 八年级上册数学难题:《轴对称》和《全等三角形》。(人教) 的信息别忘了在本站进行查找喔。