本篇文章给大家谈谈 二次函数交点式 的顶点坐标和对称轴怎样表示? ,以及 二次函数解析式的交点式的顶点坐标和对称轴怎么算? 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 二次函数交点式 的顶点坐标和对称轴怎样表示? 的知识,其中也会对 二次函数解析式的交点式的顶点坐标和对称轴怎么算? 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)顶点坐标:-b/2a,[(4ac-b²)/4a]。三、拓展知识-二次函数图像的性质 a的正负:当a大于0时,抛物线
二次函数顶点坐标公式和对称轴:对称轴公式:x=-b/(2a)。顶点公式:y=a(x-h)²+k,顶点坐标为(h,k),其中a≠0,a、h、k为常数。二次函数的基本表示形式为y=ax²+bx+c,其中a≠0。二次项系数a
顶点式:y=a(x-h)2+k 抛物线的顶点P(h,k)对于二次函数y=ax2+bx+c 其顶点坐标为(-b/2a,(4ac-b2)/4a)交点式:y=a(x-x₁)(x-x ₂)仅限于与x轴有交点A(x₁ ,0)和B(x
1、对称轴公式是:x=-b/(2a)。2、对于二次函数y=ax^2+bx+c 其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)
1、一般式:y=ax2+bx+c(a≠0)。2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。历史
对称轴x=(x1+x2)/2 顶点[(x1+x2)/2.-a(x1-x2)²/4]
二次函数交点式 的顶点坐标和对称轴怎样表示?
对称轴x=(x1+x2)/2 顶点[(x1+x2)/2.-a(x1-x2)²/4]
二次函数顶点坐标公式和对称轴:对称轴公式:x=-b/(2a)。顶点公式:y=a(x-h)²+k,顶点坐标为(h,k),其中a≠0,a、h、k为常数。二次函数的基本表示形式为y=ax²+bx+c,其中a≠0。二次项系数a决
1、一般式:y=ax2+bx+c(a≠0)。2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。历史
对称轴x=(x1+x2) /2 x=(x1+x2) /2代入解得y=-a(x1-x2)²/4 顶点( (x1+x2)/2,-a(x1-x2)²/4)
二次函数解析式的交点式的顶点坐标和对称轴怎么算
1、对称轴公式是:x=-b/(2a)。2、对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂
二次函数顶点坐标公式推导:一般式:y=ax^2+bx+c(a、b、c为常数,a≠0)顶点式:y=a(x-h)^2+k 抛物线的顶点P(h、k)于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)推导:y=ax^2+
对称轴x=(x1+x2)/2 顶点[(x1+x2)/2.-a(x1-x2)²/4]
二次函数顶点坐标公式和对称轴:对称轴公式:x=-b/(2a)。顶点公式:y=a(x-h)²+k,顶点坐标为(h,k),其中a≠0,a、h、k为常数。二次函数的基本表示形式为y=ax²+bx+c,其中a≠0。二次项系数a决
1、一般式:y=ax2+bx+c(a≠0)。2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。历史
对称轴x=(x1+x2) /2 x=(x1+x2) /2代入解得y=-a(x1-x2)²/4 顶点( (x1+x2)/2,-a(x1-x2)²/4)
二次函数解析式的交点式的顶点坐标和对称轴怎么算?
对称轴x=(x1+x2)/2 顶点[(x1+x2)/2.-a(x1-x2)²/4]
二次函数的解析式一般有以下三种基本形式:1、一般式:y=ax2+bx+c(a≠0)。2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,
对称轴是-2a/b定点坐标(-2a/b,4ac-b平方/4a)
对称轴是(x1+x2)/2 顶点坐标是((x1+x2)/2,-a(x1-x2)²/4)
二次函数交点式对称轴和顶点坐标
二次函数的解析式一般有以下三种基本形式:
1、一般式:y=ax2+bx+c(a≠0)。
2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。
3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
历史
大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7世纪印度的婆罗摩笈多是第一位懂得使用代数方程的人,它同时容许有正负数的根。
11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。
对称轴是-2a/b定点坐标(-2a/b,4ac-b平方/4a)
1、首先令二次函数解析式为零,求出两个解,即二次函数图像与x轴的两个交点,如下图所示:
2、由两个交点相加除2得到对称轴-b/2a,如下图所示:
3、将对称轴坐标带入解析式,得到顶点坐标(-b/2a,(4ac-b^2)/4a),如下图所示:
对称轴x=(x1+x2)/2
顶点[(x1+x2)/2.-a(x1-x2)²/4]
答:
抛物线与x轴的交点(x1,0),(x2,0)
则抛物线为:
y=a(x-x1)(x-x2)
对称轴x=(x1+x2) /2
x=(x1+x2) /2代入解得y=-a(x1-x2)²/4
顶点( (x1+x2)/2,-a(x1-x2)²/4)
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,但初中课本上都是第一个式子)
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2;-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2;-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式]
a≠0,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。
关于 二次函数交点式 的顶点坐标和对称轴怎样表示? 和 二次函数解析式的交点式的顶点坐标和对称轴怎么算? 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 二次函数交点式 的顶点坐标和对称轴怎样表示? 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 二次函数解析式的交点式的顶点坐标和对称轴怎么算? 、 二次函数交点式 的顶点坐标和对称轴怎样表示? 的信息别忘了在本站进行查找喔。